PURIFICATION OF β -GALACTOSIDASE FROM WHEAT-GERM BY AFFINITY CHROMATOGRAPHY

Hideaki HAMAZAKI and Kyoko HOTTA

Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 228, Japan

Received 28 February 1977

1. Introduction

Affinity chromatography has been proved to be an excellent method to purify enzymes and other biomolecules [1]. For isolation of Escherichia coli β-galactosidase Steers et al. developed an adsorbent consisting of agarose gel coupled with β -thiogalactoside as a ligand via spacer arms [2]. In the case of this adsorbant, however, the adsorption phenomenon was pointed out not to be ligand-specific and appropriate spacer arms devoid of the ligand could bind E. coli β -galactosidase [3]. Another type of ligand, p-aminophenyl β-D-glycoside, was used for isolation of glycosidases from bovine and murine liver, but resolution of the enzymes was difficult because these enzymes possessed similar affinity to the binding glycones [4]. Therefore, it would be necessary to investigate a new ligand to develop a specific adsorbent for β -galactosidase.

In this paper we describe a new affinity method utilizing lactose-coupled polyacrylamide gel for purification of β -galactosidase from wheat-germ. The desired enzyme was adsorbed specifically to this adsorbent and eluted with the ligand.

2. Materials and methods

Wheat-germ (type 1) was purchased from Sigma, Bio-Gel P-300 (50–100 mesh) was from Bio-Rad Laboratories, and Sephadex G-150 (fine) was from Pharmacia. All chemicals were reagent grade. Galactosyl β -(1–4)glucitol was prepared by reduction of lactose with sodium borohydride.

2.1. Enzyme assay

Enzyme activity was assayed at 30° C in a mixture containing $50 \,\mu$ l of enzyme and 1 ml $0.4 \,\mathrm{mM} \,p$ -nitrophenyl glycoside (Sigma) in $0.05 \,\mathrm{M}$ sodium citrate buffer (pH 4.7). The reaction was terminated by the addition of $1.5 \,\mathrm{ml}$ of $0.2 \,\mathrm{M}$ sodium carbonate, and the amount of released p-nitrophenol was estimated spectrophotometrically using its molar extinction coefficient at $400 \,\mathrm{nm}$, $1.83 \cdot 10^4 \,\mathrm{M}^{-1} \cdot \mathrm{cm}^{-1}$. One unit β -galactosidase was defined as the amount of enzyme which hydrolyzed 1 μ mol substrate/min under the condition described above. Protein was determined by the method of Lowry et al. [5].

2.2. Coupling of lactose to polyacrylamide gel

Hydrazide derivative of Bio-Gel P-300, prepared by the method of Inman et al. [6], was suspended in 0.1 M lactose. The gel was heated in a boiling water bath for 1 h and stood overnight at room temperature. Free ligand was removed subsequently by washing the gel exhaustively with the column buffer consisting of 0.02 M sodium acetate buffer (pH 3.9) containing 0.1 M NaCl. Ligand 27–30 μ mol was usually coupled to 1 ml packed gel.

2.3. Enzyme preparation

Enzyme preparation was performed at 4° C. A 200 g portion of wheat-germ was homogenized in 21 of 0.1 M NaCl and adjusted to pH 3.9 with 1 N HCl. After centrifugation at 10 000 \times g for 1 h, solid ammonium sulfate was added to the supernatant obtaining 60% saturation. The precipitate was collected by centrifugation, dissolved in 300 ml column buffer and dialyzed against the same buffer.

The crude enzyme fraction was applied on an affinity column (2.5 \times 16 cm). The column was eluted with 300 ml/column buffer and was subsequently eluted with 200 ml same buffer containing 0.1 M galactosyl β (1–4) glucitol. The protein concentration of column effluent was estimated spectrophotometrically at 280 nm. The β -galactosidase fraction eluted with the ligand was concentrated to 5 ml using a Toyo UP-20 ultrafilter (Toyo Roshi Co.).

The β -galactosidase fraction was applied to a Sephadex G-150 column (2.6 \times 95 cm) previously equilibriated with 0.05 M sodium phosphate buffer (pH 6.2) containing 0.2 M NaCl. Human γ -globulin, bovine serum albumin, ovalbumin, chymotrypsinogen A, and sperm-whale myoglobin were used as standards for molecular weight estimation of the purified enzyme.

2.4. Gel electrophoresis

The purity of the enzyme was examined by electrophoresis in 7.5% acrylamide gels using the procedure of Davis [7]. The gels were stained with Coomassie Blue R-250. In order to localize the enzyme activity parallel gels were sliced into 1 mm thickness and extracted with 0.05 M sodium citrate buffer (pH 4.7).

3. Results

3.1. Ammonium sulfate fractionation

Wheat-germ extracts contained several exoglycosidases, including α -mannosidase, β -galactosidase, α -galactosidase, β -N-acetylglucosaminidase, β -glucosidase and α -L-fucosidase. By ammonium sulfate fractionation the specific activity of β -galactosidase was increased 2-fold as shown in table 1, but all other glycosidases also remained in this fraction.

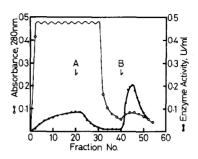


Fig. 1. Purification of wheat germ β -galactosidase on polyacrylamide derivatized with lactose. Ammonium sulfate, 270 ml fraction, was applied on the column (2.5 \times 16 cm), and after eluting with 300 ml column buffer (A). The column was eluted with 0.1 M galactosyl β -(1-4)glucitol in the same buffer (B). The flow-rate was 50 ml/h and 15 ml fractions were collected.

3.2. Affinity chromatography

The ammonium sulfate fraction was applied to the affinity column, and the glycosidases except β -galactosidase were eluted almost completely with the column buffer. The β -galactosidase adsorbed to the column was effectively eluted with 0.1 M galactosyl β -(1-4)glucitol (fig.1). The specific activity of β -galactosidase was elevated to 300-fold in this step. The cross-contamination of other glycosidases was removed almost completely. The column could be used repeatedly after washing with 0.1 M lactose and the column buffer.

3.3. Gel-filtration and electrophoresis

The enzyme fraction obtained by affinity chromatography was applied to a Sephadex G-150 column to remove protein contaminants devoid of enzyme activity (fig.2). In this step the specific activity increased again 5-fold. The molecular weight of the

Table 1 Purification of β -galactosidase of wheat-germ

Purification step	Protein (mg)	Total activity (units)	Specific activity (units/mg)	Purification	Recovery (%)
1. Extracts	12800	109.8	0.0086	1	100
2. Ammonium sulfate fraction	3240	68.0	0.021	2.4	62
3. Affinity chromatography	4.55	27.3	6.0	698	25
4. Gel-filtration	0.83	25.5	30.6	3560	23

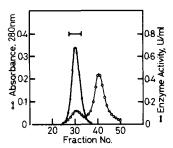


Fig. 2. Gel-filtration of wheat-germ β -galactosidase. Enzyme fraction, 5 ml, obtained by affinity chromatography, was applied on the Sephadex G-150 column (2.6 \times 95 cm). The column was eluted at a flow-rate of 13 ml/h and 10 ml fractions were collected. Tubes 28–33 were pooled as the purified β -galactosidase.

enzyme was estimated to be 7.5×10^4 by the gelfiltration analysis. Polyacrylamide gel electrophoresis of the purified enzyme indicated two bands which appeared to be associated with β -galactosidase activity (fig.3).

4. Discussion

Affinity chromatography is a very useful method for isolation of an enzyme from many other contaminants. But in the case of β -galactosidase any adsorbent that had ever been tried was found to be nonspecific as regards the structure of glycoside moiety [3,4,8]. It was shown that lactose-coupled polyacrylamide gel was biospecific for β -galactosidase. This adsorbent will be useful for the separation of β-galactosidase from other sources because of its specificity and the mildness of the elution system. Although the form of linkage between lactose and polyacrylamide-hydrazide is not clear, it might be reasonable to consider the formation of a hydrazone. The fact that about 50% of β -galactosidase activity could not bind to this resin suggests that wheat-germ has two kinds of β -galactosidases, one of which is adsorbed and the other is not. The latter β -galactosidase might have no affinity for or is not sterically accessible to the ligand.

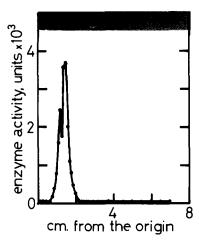


Fig. 3. Polyacrylamide gel electrophoresis of wheat-germ β -galactosidase. About 20 μ g each of protein sample was applied and after electrophoresis one column of gel was stained for protein. The other was sliced into 1 mm sections to detect enzyme activity.

Acknowledgements

We are indebted to Dr M. Kurokawa for his encouragement and support. Thanks are due to Miss K. Imai for her skillful assistance.

References

- [1] Cuatrecasas, P. and Anfinsen, C. B. (1971) in: Annual Review of Biochemistry (Snell, E. E. ed) Vol. 40, pp. 259-278, Annual Reviews Inc., California.
- [2] Steers, E., Cuatrecasas, P. and Pollard, H. B. (1971)J. Biol. Chem. 246, 196-200.
- [3] O'Carra, P., Barry, S. and Griffin, T. (1974) in: Methods in Enzymology (Jakoby, W. B. and Wilchek, M. eds) Vol. 34, pp. 108-126, Academic Press, New York and London.
- [4] Junowicz, E. and Paris, J. E. (1973) Biochim. Biophys. Acta 321, 234—245.
- [5] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [6] Inman, J. K. and Dintzis, H. M. (1969) Biochemistry 8, 4074-4082.
- [7] Davis, B. J. (1964) Ann. NY Acad. Sci. 121, 404-427.
- [8] Mega, T. and Matsushima, Y. (1976) J. Biochem. (Tokyo) 79, 185-194.